Preliminary communication

Metal cluster-induced desulphurization of N-(p-methoxybenzoyl) -S-benzoylsulphenamide. Crystal and molecular structures of [$\left.\mathrm{Os}_{6}(\mathrm{CO})_{20}\left(\mu_{4}-\mathrm{S}\right)(\mathrm{MeCN})\right]$
 Siu-Ming Lee, Kung-Kai Cheung, Wing-Tak Wong *
 Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Received 7 April 1995

Abstract

Reaction of $\mathrm{N}-\left(p\right.$-methoxybenzoyl)-S-benzoylsulphenamide $\mathbf{1}$ with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ at room temperature gives $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu_{3^{-}}\right.\right.$ S)] $\mathbf{2}$ and $\left[\mathrm{Os}_{6}(\mathrm{CO})_{20}\left(\mu_{4}-\mathrm{S}\right)(\mathrm{MeCN})\right] \mathbf{3}$ in moderate yield. The crystal structure of $\mathbf{3}$ has been determined. Complex $\mathbf{2}$ is an intermediate in the formation of 3 . Complex 3 undergoes dissociation of CO to give $\left[\mathrm{Os}_{6}(\mathrm{CO})_{19}\left(\mu_{3}-\mathrm{S}\right)\right]$ and $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\left(\mu_{4}-\mathrm{S}\right)\right]$.

Keywords: Osmium; Carbonyl; Cluster; Desulfurization; Crystal structure

Studies of the reactions of oxygen- and sulphur-containing molecules with metal clusters are currently of interest [1-3]. Previously we reported the preparation of some triosmium clusters containing sulphur and oxygen donor ligands in interesting bonding modes [4]. We have now studied the cluster complexes containing ligands with more than two types of donor atoms, and report below synthesis and characterization of clusters derived from N -(p-methoxybenzoyl)-S-benzoylsulphenamide [5], which possesses three different donor atoms, sulphur, oxygen and nitrogen.

In contrast to S -alkoylsulphenamides and some S benzoylsulphenamides, which are known to decompose to elemental sulphur and amide by a bimolecular process [6], N -(p-methoxybenzoyl)-S-benzoylsulphenamide $\mathbf{1}$ is known to be stable in both solid and liquid states [5]. However, reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right.$] with 1 in dichloromethane at room temperature gives $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu_{3}-\mathrm{S}\right)\right] 2$ (33\%) and $\left[\mathrm{Os}_{6}(\mathrm{CO})_{20}\left(\mu_{4}-\right.\right.$ $\mathrm{S})(\mathrm{MeCN})] \mathbf{3}(35 \%)$ (see Scheme 1), which contain only the S -atom from the organic reactant; i.e. the cluster has brought about desulphurization.

The IR spectrum of 3 reveals that only terminal carbonyl ligands are present, and in the ${ }^{1} \mathrm{H}$ NMR spectrum the singlet at $\delta 2.90$ indicates the presence of

[^0]MeCN [7]. Single crystals of $\mathbf{3}$ were obtained from slow evaporation of a chloroform/ n -hexane solution at $0^{\circ} \mathrm{C}$ and its molecular structure was determined by X-ray crystallographic studies [8]. The molecular structure is shown in Fig. 1 together with some important bonding parameters.

The metal core of $\mathbf{3}$ is a combination of an open triosmium unit and a closed triosmium cluster by direct bonding between $\mathrm{Os}(3)$ and $\mathrm{Os}(6)$. The interplanar angle between the plane formed by $\operatorname{Os}(1), \mathrm{Os}(2)$ and $\mathrm{Os}(3)$ and that formed by $\mathrm{Os}(4), \mathrm{Os}(5)$ and $\mathrm{Os}(6)$ is 80.95°. There is a quadruply-bridging sulphido ligand. The Os-S bond distances fall in a range $2.393(5) \AA$ to $2.431(5) \AA$ consistent with those in other quadruply bridged sulphido-osmium cluster [9-11]. The Os(4)$\mathrm{Os}(5)$ distance is relatively short [$2.695(1) \AA$ A], perhaps owing to the contracting effect of the bridging sulphido ligand. All the other Os-Os distances are of rather similar lengths [range: $2.940-2.978(1) \AA$], and are significantly longer than those in $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]$ [12]. The non-bonding distance between $\operatorname{Os}(1) \cdots \operatorname{Os}(3)$ is $3.980(1) \AA{ }^{\circ}$. An interesting feature of $\mathbf{3}$ is that it contains a coordinated acetonitrile ligand in the axial position of $\mathrm{Os}(1)$. The $\mathrm{Os}-\mathrm{N}$ bond distance (2.11(2) \AA) is comparable to those in $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ (average $2.127(13) \AA$) and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right](2.074(23) \AA)[13]$. The cluster valence electron of $\mathbf{3}$ is 96 ($\mathrm{S}(1)$ being taken as a six-electron donor), in accordance with the EAN

Fig. 1. A perspective view of $\left[\mathrm{Os}_{6}(\mathrm{CO})_{20}\left(\mu_{4}-\mathrm{S}\right)(\mathrm{MeCN})\right]$ (3) showing the atomic labelling scheme. Principal bond lengths (\AA) and angles (${ }^{\circ}$: $\mathrm{Os}(1)-\mathrm{Os}(2) 2.949(1), \mathrm{Os}(2)-\mathrm{Os}(3) 2.947(1)$, $\mathrm{Os}(3)-\mathrm{Os}(6)$ 2.940(1), Os(4)-Os(5) 2.695(1), Os(4)-Os(6) 2.956(1), Os(5)-Os(6) $2.978(1), \mathrm{Os}(1)-\mathrm{S}(1)$ 2.431(5), $\mathrm{Os}(3)-\mathrm{S}(1) 2.409(5), \mathrm{Os}(4)-\mathrm{S}(1)$ 2.411(5), Os(5)-S(1) 2.393(5), Os(1)-N(1) 2.11(2), N(1)-C(21) 1.16(3); $\mathrm{Os}(1)-\operatorname{Os}(2)-\operatorname{Os}(3) 84.78(3), \operatorname{Os}(2)-\operatorname{Os}(3)-\operatorname{Os}(6) 155.90(4)$, $\mathrm{Os}(5)-\mathrm{Os}(4)-\mathrm{Os}(6) 63.42(3)$, $\mathrm{Os}(4)-\mathrm{Os}(5)-\mathrm{Os}(6) 62.56(3)$, $\mathrm{Os}(3)-$ $\operatorname{Os}(6)-) \operatorname{Os}(4) 83.97(3)$, $\operatorname{Os}(3)-\operatorname{Os}(6)-\operatorname{Os}(5) 83.38(3), \mathrm{S}(1)-\operatorname{Os}(3)-$ Os(6) 74.4(1), Os(1)-S(1)-Os(3) 110.4(2), Os(1)-S(1)-Os(4) $125.4(2)$, $\mathrm{Os}(1)-\mathrm{S}(1)-\mathrm{Os}(5) 126.6(2)$, $\mathrm{Os}(3)-\mathrm{S}(1)-\mathrm{Os}(4) 109.8(2)$, $\mathrm{Os}(3)-\mathrm{S}(1)-\mathrm{Os}(5) \quad 110.1(2), \quad \mathrm{Os}(4)-\mathrm{S}(1)-\mathrm{Os}(5) \quad 68.3(1), \quad \mathrm{Os}(1)-$ $\mathrm{N}(1)-\mathrm{C}(21) 172(1)$.
rule. Unlike $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}\right.$ (MeCN)], which also contain a coordinated-labilized MeCN , complex 3 is stable towards $\mathrm{H}_{2}, \mathrm{CO}$ and PPh_{3}.

Thermolysis of $\mathbf{3}$ in refluxing chloroform for 45 minutes gave two known compounds, $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\left(\mu_{4^{-}}\right.\right.$ $\mathrm{S})] 4$ and $\left[\mathrm{Os}_{6}(\mathrm{CO})_{19}\left(\mu_{3}-\mathrm{S}\right)\right] 5$, which were previously obtained by Adams and coworkers by other methods [14]. We have shown that 4 and 5 can also be obtained in good yield if the mixture of 1 and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $(\mathrm{MeCN})_{2}$] is heated in chloroform. This leads us to believe that 3 is probably an intermediate in the formation of $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\left(\mu_{1}-\mathrm{S}\right)\right]$ and $\left[\mathrm{Os}_{6}(\mathrm{CO})_{19}\left(\mu_{3}-\mathrm{S}\right)\right]$ from 1.

We also found that when $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu_{3}-\mathrm{S}\right)\right] 2$ was added to the solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ in dichloromethane at room temperature, complex 3 was obtained (after chromatographic work-up) as the major product together with some unidentified products in low yields (see Scheme 1). We thus believe that 2 is probably a precursor of 3 .
'Though the detailed mechanism is still under investigation, it is reasonable to suggest that reaction of 1 with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ gives 2 and then 2 further with another $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{MeCN})_{2}\right]$ to give 3 with the loss of one MeCN molecule. Upon heating, 3 is converted into $\left[\mathrm{Os}_{6}(\mathrm{CO})_{19}\left(\mu_{3}-\mathrm{S}\right)\right]$ and $\left[\mathrm{Os}_{5}(\mathrm{CO})_{15}\left(\mu_{4}-\mathrm{S}\right)\right]$.

Acknowledgements

We gratefully acknowledge financial support of this work by the University of Hong Kong and the Hong Kong Research Grants Council. S.M. Lee acknowledges

Scheme. 1.
the recepit of a postgraduate studentship administered by the University of Hong Kong, and Dr. W.Y. Wong for recording the ${ }^{1} \mathrm{H}$ NMR spectrum.

References

[1] G.R. Frauenhiff, Coord. Chem. Res., 121 (1992) 131.
[2] D.L. Keiter, D.S. Strickland, S.R. Wilson and J.R. Shapeley, J. Am. Chem. Soc., 108 (1986) 3846.
[3] G.D. Jarvinen and R.R. Ryan, Organometallics, 3 (1984) 1434.
[4] S.M. Lee, K.K. Cheung and W.T. Wong, J. Organomet. Chem., 494 (1995) 273.
[5] T.W.K. Yung, Ph.D. Thesis, The University of Hong Kong, Hong Kong (1993).
[6] M.S. Raasch, I. Org. Chem., 37 (1972) 3820.
[7] Spectroscopic data for 3: IR [v(CO) $\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$]: 2107w, $2077 \mathrm{~s}, 2069 \mathrm{vs}, 2046 \mathrm{~s}, 2021 \mathrm{~m}, 2005 \mathrm{~m} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $2.923(\mathrm{~s}, 3 \mathrm{H})$. FAB mass spectrum: $m / z 1736$ (M-MeCN) ${ }^{\prime}$ (1775 calc. for M^{+})
[8] Crystal data for 3: $\mathrm{C}_{22} \mathrm{H}_{3} \mathrm{NO}_{20} \mathrm{Os}_{6} \mathrm{~S}, \mathrm{M}=1774.52$, monoclinic, space group $P 2_{1} / \bar{n}, a=10.860(3) \AA, b=24.503(2) \AA, c=$ $12.697(3) \AA, \beta=97.75(2)^{\circ}, V=3347(1) \AA^{3}, Z=4, D c=3.520$ $\mathrm{g} \mathrm{cm}{ }^{-3}, \quad F(000)=3096$, Mo $\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA$, $\mu(\mathrm{MoK} \alpha)=228.13 \mathrm{~cm}^{-1}$. Red plate, crystal dimensions: 0.12
$\times 0.26 \times 0.29 \mathrm{~mm}^{3}, 4788$ data collected on a Rigaku-AFC7R diffractometer ($4<2 \theta<45^{\circ}$), corrected for absorption by Ψ scan method, 2900 unique observed reflections $[I>3 \sigma(I)]$. Structure solved by direct methods (SIR88) [15] and Fourier difference techniques, refined by full-matrix least-squares analysis (Os and S anisotropic) with 231 parameters to $R=0.037$, $R_{w}=0.036, w=4 F_{0}^{2} /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+0.003\left(F_{0}{ }^{2}\right)^{2}\right]$, program used teXsan [16]. Atomic coordinates, thermal parameters and complete lists of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.
[9] R.D. Adams, Z. Dawoodi, D.F. Foust, Organometallics, l (1982) 411.
[10] R.D. Adams, D.F. Foust and P. Mathur, Organometallics, 2 (1983) 990.
[11] R.D. Adams, I.T. Horvath, P. Mathur and B.E. Segmüller, Organometallics, 2 (1983) 996.
[12] M.R. Churchill and B.G. DeBoer, Inorg. Chem., 16 (1977) 878.
[13] P.A. Dawson, B.F.G. Johnson, J. Lewis, J. Puga, P.R. Raithby, M.J. Rosales, J. Chem. Soc. Dalton Trans., (1982) 233.
[14] R.D. Adams, I.T. Horvath and P. Mathur, Organometallics, . (1984) 623.
[15] M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Cryst., 22 (1989) 389.
[16] TeXsan: Crystal Structure Analysis Package, Molecular Structure Corporation 1985 and 1992.

[^0]: * Corresponding author.

